by Xin Huang^a), Ai-Min Tan*^a), Shi-Bao Yang^a), An-Yuan Zhang^a), and Hua Zhang^a)

^a) Jiangsu Simcere Pharmaceutical R&D Co., Ltd., No. 699-18 Xuanwu Avenue, Xuanwu District, Nanjing 210042, P. R. China

(phone: +862585566666-1811; fax: +862585283040; e-mail: amtancpu@yahoo.com.cn)

Two new glycosides, $(3\beta,8\beta,9\alpha,16\alpha,17\alpha)$ -14,16 β :15,20 α :18,20 β -triepoxy-16 α ,17 α -dihydroxy-14-oxo-13,14:14,15-disecopregna-5,13(18)-dien-3-yl α -cymaropyranosyl- $(1 \rightarrow 4)$ - α -digitoxopyranosyl- $(1 \rightarrow 4)$ - α -oleandropyranoside (1) and $(3\beta,8\beta,9\alpha,16\alpha,17\alpha)$ -14,16 β :15,20 α :18,20 β -triepoxy-16 β :17 α -dihydroxy-14-oxo-13,14:14,15-disecopregna-5,13(18)-dien-3-yl α -oleandropyranosyl- $(1 \rightarrow 4)$ - α -digitoxopyranosyl- $(1 \rightarrow 4)$ - α -digi

Introduction. - Cynanchum paniculatum (BUNGE) KITAG. (Asclepiadaceae), a traditional Chinese medicine distributed extensively in China, has been used mainly as an anodyne for the treatment of snake bites, hives, and chronic tracheitis [1]. Previous studies showed that the major components of Cynanchum paniculatum were paeonol [2] and steroidal glycosides [3]. In particular, there were steroidal glycosides with a 13,14:14,15-disecopregnane-type aglycone. To date, more than 30 glycosides of this type have been identified in Cynanchum paniculatum. Further investigation on C. *paniculatum* revealed two new glycosides with the same aglycone from this medicinal plant. The new compounds were determined to be $(3\beta_{,8}\beta_{,9}\alpha_{,1}6\alpha_{,1}7\alpha_{,1})$ - $14,16\beta:15,20\alpha:18,20\beta$ -triepoxy- $16\alpha,17\alpha$ -dihydroxy-14-oxo-13,14:14,15-disecopregna-5,13(18)-dien-3-yl α -cymaropyranosyl- $(1 \rightarrow 4)$ - α -digitoxopyranosyl- $(1 \rightarrow 4)$ - α -oleandropyranoside (1) and $(3\beta,8\beta,9\alpha,16\alpha,17\alpha)$ -14,16 β :15,20 α :18,20 β -triepoxy-16 β :17 α dihydroxy-14-oxo-13,14:14,15-disecopregna-5,13(18)-dien-3-yl α -oleandropyranosyl- $(1 \rightarrow 4)$ -a-digitoxopyranosyl- $(1 \rightarrow 4)$ -a-oleandropyranoside (2). The present work describes the isolation and structural elucidation of those two new C₂₁ steroidal glycosides.

Results and Discussion. – Compound **1** was obtained as a colorless, amorphous solid. The IR spectrum revealed the presence of OH groups (3494 cm⁻¹), C=C bonds (1656 cm⁻¹), and C=O groups (1728 cm⁻¹). The specific rotation $[a]_D^{25}$ (c=0.04, MeOH) was +47.1. The molecular formula was established as C₄₁H₆₂O₁₅ by HR-ESI-MS, showing the $[M + Na]^+$ ion peak at m/z 817.4000 (C₄₁H₆₂NaO₁₅, calc. 817.3981). Two Me groups at δ (H) 0.91 (s) and 1.47 (s) were observed in the ¹H-NMR spectrum (*Table 1*). The ¹³C-NMR spectra showed a CO C-atom signal (δ (C) 178.5 (s, C(14)) and four unsaturated ¹³C signals (δ (C) 140.5 (s, C(5)); 119.9 (d, C(6)); 116.4 (s, C(13));

© 2009 Verlag Helvetica Chimica Acta AG, Zürich

Table 1. ¹H- and ¹³C-NMR Data of Compound 1. δ in ppm, J in Hz.

	$\delta(C)^a)$	$\delta(\mathrm{H})^{\mathrm{b}})$		$\delta(C)^a)$	$\delta(\mathrm{H})^{\mathrm{b}})$		
$H_a - C(1)$	36.5 (t)	1.05 - 1.08 (m)	Oleandropyranose:				
$H_{\beta}-C(1)$		1.94 - 1.96 (m)	H-C(1')	97.9 (d)	4.52 (dd, J = 10.0, 2.0)		
$H_a - C(2)$	29.4 (t)	1.21 - 1.23 (m)	$H_a - C(2')$	36.7 (t)	2.20 - 2.22 (m)		
$H_{\beta}-C(2)$		1.53 - 1.54 (m)	$H_{\beta}-C(2')$		1.47 - 1.53 (m)		
H-C(3)	77.8(d)	3.52 - 3.56(m)	H-C(3')	79.2(d)	3.31 - 3.34(m)		
$H_a - C(4)$	38.7 (t)	2.31–2.35 (<i>m</i>)	H-C(4')	82.6(d)	3.16-3.19 (<i>m</i>)		
$H_{\beta}-C(4)$		2.16 - 2.19(m)	H-C(5')	71.2(d)	3.22 - 3.25 (m)		
$H_{\beta}-C(5)$	140.5 (s)		Me(6')	18.3(q)	1.26 (d, J = 6.5)		
H-C(6)	119.9 (d)	5.39 (<i>t</i> -like)	MeO	56.6(q)	3.41(s)		
$H_a - C(7)$	27.7 (t)	2.06 - 2.08 (m)	Digitoxopyranose:				
$H_{\beta}-C(7)$		2.42-2.45 (<i>m</i>)	H - C(1'')	98.6 (d)	5.00 (dd, J = 10.0, 2.0)		
H-C(8)	53.2 (d)	1.25 - 1.30 (m)	$H_a - C(2'')$	37.1 (t)	2.10-2.13 (<i>m</i>)		
H-C(9)	40.6(d)	2.46-2.49 (<i>m</i>)	$H_{\beta}-C(2'')$		1.70 - 1.72 (m)		
C(10)	38.6 (s)		H-C(3")	67.7(d)	4.05 - 4.06 (m)		
$H_a - C(11)$	20.6 (t)	1.33 - 1.36 (m)	H-C(4")	79.5 (d)	3.19-3.22 (<i>m</i>)		
$H_{\beta}-C(11)$		2.48 - 2.51 (m)	H-C(5")	68.7(d)	3.74 - 3.78 (m)		
$H_{a} - C(12)$	29.4 (t)	2.10-2.12(m)	Me(6")	18.2(q)	1.24 (d, J = 6.5)		
$H_{b} - C(12)$		1.98 - 1.99 (m)	Cymaropyra	nose:			
C(13)	116.4 (s)		H - C(1''')	97.4 (d)	4.90 (<i>d</i> -like, $J = 3.3$)		
C(14)	178.5 (s)		$H_a - C(2''')$	30.9 (t)	2.28–2.31 (<i>m</i>)		
$H_a - C(15)$	66.5 (<i>t</i>)	4.14 - 4.17 (m)	$H_{\beta}-C(2''')$		1.68 - 1.72 (m)		
$H_{\beta}-C(15)$		3.81 - 3.84 (m)	H-C(3''')	75.1 (d)	3.60 - 3.64(m)		
H - C(16)	83.1 (d)	5.36 (dd, J = 10.5, 7.0)	H-C(4''')	72.1(d)	3.21-3.23 (<i>m</i>)		
C(17)	91.3 (s)		H-C(5"")	65.9 (d)	3.80 - 3.84(m)		
H - C(18)	145.7 (d)	6.38 <i>(s)</i>	Me(6''')	17.9(q)	1.29 (d, J = 6.5)		
Me(19)	17.9(q)	0.91 (s)	MeO	56.3 (q)	3.40(s)		
C(20)	119.6 (s)						
Me(21)	19.9(q)	1.47 (s)					
HO-C(17)		4.13 (br. s)					
^a) Measured at 125 MHz in CDCl ₃ . ^b) Measured at 500 MHz in CDCl ₃ .							

(145.7 (d, C(18)); Table 1). The data of the ¹³C-NMR and the DEPT spectra indicated a 15,20:18,20-diepoxy-13,14:14,15-disecopregnane-type skeleton as the aglycone moiety [4][5]. The CH signal at $\delta(C)$ 77.8 (d), together with the COSY correlation $H-C(3)/H_{\beta}-C(4)$ and the HMBC correlation $H_{\beta}-C(4)/C(6)$ enabled the location of an O-atom at C(3). The quarternary C-atom at $\delta(C)$ 91.3 (s), combined with HMBC correlations C(20)/HO-C(17), C(17)/H-C(18), H-C(16), and H-C(21) revealed the presence of a OH group at C(17). In addition, the HSQC and HMBC spectra (Fig. 1) provided solid evidence to unambiguously assign all signals of the aglycone of **1** as shown in Table 1. The ROESY correlations of $H-C(3)/H_a-C(4)$, $H_a-C(4)/H_a$ $H_a - C(7), H_a - C(7)/H - C(9), H_{\beta} - C(7)/H - C(8), \text{ and } H_{\beta} - C(7)/Me(19) \text{ indicate that}$ the orientations of H–C(3), H–C(8), and H–C(9) were α , β , and α , respectively. Moreover, the ¹H-, ¹³C-NMR data of the rings D and E were similar to those of hancopregnane isolated from *Cynanchum hancockianum* [5]. Consequently, the orientations of H–C(16), HO–C(17) and Me–C(20) were confirmed to be α , α , and α . Therefore, the structure of the aglycone of **1** was determined as neocynapanogenin F [6].

The ¹H- and ¹³C-NMR spectroscopic data of the sugar moiety of **1** (*Table 1*) exhibited three Me groups (δ (H) 1.26 (d, J = 6.5), 1.24 (d, J = 6.5), and 1.29 (d, J =

Fig. 1. Key HMBC and ROESY correlations for 1

6.5)), two MeO groups (δ (H) 3.41 (s), 3.40 (s)) and three CH₂ groups (δ (C) 36.7, δ (H₈) 1.47 - 1.53, $\delta(H_a) 2.20 - 2.22$ (CH₂(2')); $\delta(C) 37.1$, $\delta(H_a) 1.70 - 1.72$, $\delta(H_a) 2.10 - 2.13$ $(CH_2(2''))$; and $\delta(C)$ 30.9, $\delta(H_{\beta})$ 1.68–1.72, $\delta(H_{\alpha})$ 2.28–2.30 $(CH_2(2'')))$ as well as three anomeric H-atoms (δ (H) 4.52 (dd, J = 10.0, 2.0), 5.00 (dd, J = 10.0, 2.0), and 4.90 (d-like, J = 3.3)), which, combined with the ¹H,¹H-COSY and HSQC spectra, suggested the presence of three 2,6-dideoxy sugars (Fig. 1). They were identified as α -oleandropyranose, α -digitoxopyranose, and α -cymaropyranose by the ¹³C-NMR spectroscopic data of the three anomeric C-atoms ($\delta(C)$ 97.9 (d), 98.6 (d), and 97.4 (d)), and the coupling constants in the ¹H-NMR spectra as well as the NOEs in the ROESY spectra. The correlations within the sugar moieties H-C(1')/H-C(4'), $H-C(4')/Me(6'), H_a-C(2')/H-C(3'), H-C(1'')/H_B-C(2''), H-C(3'')/Me(6''),$ Me(6'')/H-C(4''), and H-C(1''')/H-C(4''') in the ROESY spectrum (Fig. 1) further confirmed the structures of the individual sugars. The HMBC correlations of H-C(1'')/C(4') and H-C(1''')/C(4'') (Fig. 1) revealed a linear linkage of the sugar chain. The ¹Hand ¹³C-NMR data of the sugar moiety were similar to those of cynatroside A isolated from Cynanchum atratum [7]. The linking position of the sugar moiety at C(3) was deduced from the HMBC correlation H-C(1')/C(3). Therefore, the structure of compound **1** was unequivocally assigned as $(3\beta_{,8}\beta_{,9}\alpha_{,1}6\alpha_{,1}7\alpha_{)}-14,16\beta_{,1}5,20\alpha_{,1}8,20\beta_{,2}$ triepoxy- 16α , 17α -dihydroxy-14-oxo-13, 14: 14, 15-disecopregna-5, 13(18)-dien-3-yl cymaropyranosyl- $(1 \rightarrow 4)$ - α -digitoxopyranosyl- $(1 \rightarrow 4)$ - α -oleandropyranoside.

Compound 2 was obtained as a colorless, amorphous solid. The IR spectrum revealed the presence of OH groups (3463 cm⁻¹), a C=C bond (1655 cm⁻¹), and a C=O group (1727 cm⁻¹). The specific rotation $[\alpha]_D^{25}$ (c = 0.28M, MeOH) of compound 2 was determined to be +28.4. The molecular formula was established by HR-ESI-MS as $C_{41}H_{62}O_{15}$ from the $[M + Na]^+$ ion peak at m/z 817.3949 ($C_{41}H_{62}NaO_{15}^+$, calc. 817.3981). Compared to compound 1, the ¹³C-NMR spectroscopic data were similar, with a difference of five ¹³C signals of the terminal sugar. The ROESY correlations of $H-C(1'')/H_{\beta}-C(2'''), H_{\alpha}-C(2''')/H-C(3'''), H_{\alpha}-C(2''')/H-C(5''') \text{ and } H-C(4''')/H_{\beta}-C(5''')$ Me(6''') (Fig. 2) revealed that the orientation of H-C(3''') was different from Me(6'''). Thus, the sugar was identified as α -oleandropyranose. A linear linkage of the sugar chain was also confirmed by the HMBC relationships H-C(1'')/C(4'), and H-C(1''')/C(4'), and H-C(1''')/C(4'), and H-C(1''')/C(4'), and H-C(1''')/C(4'). C(4'') (Fig. 2). The complete assignment of the sugar resonances was based on the data of cynatratoside C reported from Vincetoxicum hirundinaria [8]. The HMBC H-C(1')/ C(3) indicated the linking position of the sugar moiety at C(3). Thus, the structure of compound **2** was identified as $(3\beta,8\beta,9\alpha,16\alpha,17\alpha)$ -14,16 β :15,20 α :18,20 β -triepoxy- 16β : 17α -dihydroxy-14-oxo-13,14: 14,15-disecopregna-5,13(18)-dien-3-yl α -oleandropyranosyl- $(1 \rightarrow 4)$ - α -digitoxopyranosyl- $(1 \rightarrow 4)$ - α -oleandropyranoside.

Experimental Part

General. TLC: precoated SiO₂ G plates (Qingdao Marine Chemical Plant, Qingdao, P. R. China). Column chromatography (CC): Silica gel (SiO₂; 200–300 mesh; Qingdao Marine Chemical Plant, Qingdao, P. R. China), Sephadex LH-20 (GE Healthcare Bio-Sciences AB, USA), YMC*GEL ODS-A rp-filler (500 mesh, YMC Co., LTD, Japan). Optical rotation: RUDOLPH Automatic Polarimeter. IR Spectra (KBr): Bruker v33 Spectrometer; in cm⁻¹. ¹H-, ¹³C-, and 2D-NMR Spectra: Bruker AV-500 spectrometer and Bruker AV-300 spectrometer (δ in ppm rel. to Me₄Si, J in Hz). MS: Agilent 1100-JC/ MSD-Trap (ESI-MS) and Micro-Q-TOF (HR-ESI-MS) spectrometer.

Fig. 2. Key HMBC and ROESY correlations for 2

Plant Material. The stems of *Cynanchum paniculatum* were purchased from *Anhui Fengyuan Pharmaceutical Co., Ltd.*, P. R. China in June 2006, and identified by Prof. *De-Kang Wu* (Nanjing University of Traditional Chinese Medicine). A voucher specimen has been deposited with the Herbarium of China Pharmaceutical University, Nanjing, P. R. China (reference No. 20060705).

Extraction and Isolation. The dried stems of *Cynanchum paniculatum* (8.0 kg) were extracted with 95% EtOH (90 l total) at r.t. for 3 times within 2 d. The filtered soln. was concentrated *in vacuo* to yield a fluid extract (3.0 kg), which was further extracted with AcOEt (15 l). After concentrating the AcOEt extract *in vacuo*, the residue (150.0 g) was separated by CC (SiO₂; gradient elution of petroleum ether (PE)/acetone $1:1 \rightarrow$ acetone) to afford 20 fractions (*Frs. 1.1 – 1.20*). *Frs. 1.19 – 1.20* were combined and further purified by SiO₂ CC with PE/CHCl₃/MeOH 10:30:1 to yield seven fractions (*Fr. 2.1 – 2.7*). *Frs. 2.3 – 2.5* were combined and further purified by CC (SiO; CHCl₃/AcOEt 1:2) to yield two fractions (*Frs. 3.1* and *3.2*). *Fr. 3.2* was subjected to additional CC of *Sephadex* LH-20 with acetone, SiO₂ with PE/CHCl₃/MeOH 5:15:0.5 elution and octadecyl silica eluting with MeOH/H₂O 1:1 to afford compounds **1** (18 mg) and **2** (17 mg).

 $(3\beta,8\beta,9\alpha,16\alpha,17\alpha)$ -14,16 β :15,20 α :18,20 β -Triepoxy-16 α ,17 α -dihydroxy-14-oxo-13,14:14,15-disecopregna-5,13(18)-dien-3-yl α -Cymaropyranosyl- $(1 \rightarrow 4)$ - α -digitoxopyranosyl- $(1 \rightarrow 4)$ - α -oleandropyranoside (= (2aR,4aR,6aR,10S,12aR,14bS)-2a,4,4a,6a,7,9,10,11,12,12a,12b,13,14,14b-Tetradecahydro-14b-hydroxy-2a,12a-dimethyl-6-oxo-6H-2,3,5-trioxapentaleno[1',6':5,6,7]cyclonona[1,2-a]naphthalen-10-yl 2,6-Dideoxy-3-O-methyl- α -D-ribo-hexopyranosyl- $(1 \rightarrow 4)$ -2,6-dideoxy- α -D-ribo-hexopyranosyl- $(1 \rightarrow 4)$ -2,6-

	$\delta(C)^a)$	$\delta(\mathrm{H})^{\mathrm{b}})$		$\delta(C)^a)$	$\delta(\mathrm{H})^{\mathrm{b}})$	
$H_a - C(1)$	36.4 (t)	1.04 - 1.07 (m)	Oleandropyranose:			
$H_{\beta}-C(1)$		1.92 - 1.95(m)	H-C(1')	97.9 (d)	4.50 (dd, J = 10.0, 2.0)	
$H_a - C(2)$	29.4 (t)	1.20 - 1.23 (m)	$H_a - C(2')$	36.6 (t)	2.19 - 2.23 (m)	
$H_{\beta}-C(2)$		1.53 - 1.55 (m)	$H_{\beta}-C(2')$		1.47 - 1.53 (m)	
$H_{\beta}-C(3)$	77.7(d)	3.50 - 3.53 (m)	H-C(3')	79.1 (d)	3.30 - 3.34(m)	
$H_a - C(4)$	38.6 (t)	2.28 - 2.32 (m)	H-C(4')	82.5(d)	3.16 (t-like, J = 9.0)	
$H_a - C(4)$		2.09 - 2.14(m)	H-C(5')	71.1(d)	3.25-3.27 (<i>m</i>)	
$H_{\beta}-C(5)$	140.4(s)		Me(6")	18.1(q)	1.25 (d, J = 6.5)	
H-C(6)	119.8 (d)	5.35 (<i>d</i> -like)	MeO	56.5(q)	3.37(s)	
$H_a - C(7)$	27.6 (t)	2.08 - 2.11 (m)	Digitoxopyranose:			
$H_{\beta}-C(7)$		2.40 - 2.43 (m)	H - C(1'')	98.4(d)	5.00 (dd, J = 10.0, 2.0)	
H-C(8)	53.1 (d)	1.20 - 1.23 (m)	$H_{\alpha}-C(2'')$	37.5 (t)	2.06 - 2.08 (m)	
H-C(9)	40.5(d)	2.41 - 2.43 (m)	$H_{\beta}-C(2'')$		1.66 - 1.67 (m)	
C(10)	38.5 (s)		H - C(3'')	68.3(d)	3.80 - 3.83 (m)	
$H_a - C(11)$	20.5(t)	1.36 - 1.40 (m)	H - C(4'')	81.0(d)	3.23 - 3.24 (m)	
$H_{\beta}-C(11)$		2.45 - 2.48 (m)	H-C(5")	67.8(d)	4.06 - 4.07 (m)	
$H_{a} - C(12)$	29.4 (t)	2.05 - 2.10 (m)	Me(6")	18.3(q)	1.26 (d, J = 6.5)	
$H_{b} - C(12)$		1.94 - 1.97 (m)	Oleandropyranose:			
C(13)	116.4 (s)		H - C(1''')	99.4 (d)	4.99 (<i>d</i> -like, $J = 2.0$)	
C(14)	178.3 (s)		$H_a - C(2''')$	34.1 (t)	2.25–2.26 (<i>m</i>)	
$H_a - C(15)$	66.4(t)	4.12 - 4.16(m)	$H_{\beta}-C(2''')$		1.48 - 1.53 (m)	
$H_{\beta}-C(15)$		3.78 - 3.81 (m)	H-C(3"")	77.9 (d)	3.42 - 3.44 (m)	
H - C(16)	82.9 (d)	5.33 (dd, J = 10.0, 7.5)	H-C(4''')	75.7(d)	3.13 (t-like, J = 9.0)	
C(17)	91.2 (s)		H-C(5"")	68.6(d)	3.64-3.67 (<i>m</i>)	
H - C(18)	145.6(d)	6.35 (s)	Me(6''')	17.9(q)	1.24 (d, J = 6.0)	
Me(19)	17.7(q)	0.89(s)	MeO	56.4(q)	3.37 (s)	
C(20)	119.5 (s)					
Me(21)	19.9(q)	1.43(s)				
HO-C(17)		4.10 (br. <i>s</i>)				
^a) Measured a	at 125 MHz i	n CDCl ₃ . ^b) Measured at :	500 MHz in CI	DCl ₃ .		

Table 2. ¹H- and ¹³C-NMR Data of Compound 2. δ in ppm, J in Hz.

dideoxy-3-O-*methyl-a*-D-arabino-*hexopyranoside*; **1**). Colorless, amorphous solid. $[\alpha]_{D}^{25} = +47.1$ (c = 0.04, MeOH). IR (KBr): 3494, 2902, 1728, 1656, 1309, 1272. ¹H- and ¹³C-NMR: *Table 1*. The key correlations of HMBC and ROESY are presented in *Fig. 1*. ESI-MS (neg.): 829.7 ($[M + Cl]^-$). HR-ESI-MS (pos.): 817.4000 ($[M + Na]^+$, $C_{41}H_{62}NaO_{15}^+$; calc. 817.3981).

 $(3\beta,8\beta,9\alpha,16\alpha,17\alpha)$ -14,16 β :15,20 α :18,20 β -Triepoxy-16 β :17 α -dihydroxy-14-oxo-13,14:14,15-disecopregna-5,13(18)-dien-3-yl α -Oleandropyranosyl- $(1 \rightarrow 4)$ - α -digitoxopyranosyl- $(1 \rightarrow 4)$ - α -oleandropyranoside (= (2aR,4aR,6aR,10S,12aR,12bS,14bS)-2a,4,4a,6a,7,9,10,11,12,12a,12b,13,14,14b-Tetradecahydro-14b-hydroxy-2a,12a-dimethyl-6-oxo-6H-2,3,5-trioxapentaleno[1',6':5,6,7]cyclonona[1,2-a]naphthalen-10yl 2,6-Dideoxy-3-O-methyl- α -D-arabino-hexopyranosyl- $(1 \rightarrow 4)$ -2,6-dideoxy- α -D-ribo-hexopyranosyl- $(1 \rightarrow 4)$ -2,6-dideoxy-3-O-methyl- α -D-arabino-hexopyranoside; **2**). Colorless, amorphous solid. IR (KBr): 3463, 2931, 1727, 1655, 1307, 1063. $[\alpha]_{15}^{25} = +28.4$ (c = 0.28M, MeOH). ¹H- and ¹³C-NMR: Table 2. The key correlations of HMBC and ROESY are presented in Fig. 2. ESI-MS (neg.): 829.6 ($[M + Cl]^{-}$). HR-ESI-MS (pos.): 817.3949 ($[M + Na]^+$, $C_{41}H_{62}NaO_{15}^+$; calc. 817.3981).

REFERENCES

- States Pharmacopoeia Commission, 'Chinese Pharmacopoeia (Vol. I)', Chemical Industry Press, Beijing, 2005.
- [2] H. Mitsuhashi, K. Hayashi, T. Nomura, Chem. Pharm. Bull. 1966, 14, 779.
- [3] K. Sugama, K. Hayashi, H. Mitsuhashi, K. Kaneko, Chem. Pharm. Bull. 1986, 34, 4500.
- [4] T. Nakagawa, K. Hayashi, H. Mitsuhashi, Chem. Pharm. Bull. 1983, 31, 870.
- [5] Y. Konda, Y. Toda, H. Takayanagi, H. Ogura, Y. Harigaya, H. Lou, X. Li, M. Onda, J. Nat. Prod. 1992, 55, 1118.
- [6] J. Dou, Z.-M. Bi, Y.-Q. Zhang, P. Li, Chin. J. Nat. Med. 2006, 4, 192.
- [7] K. Y. Lee, S. H. Sung, Y. C. Kim, *Helv. Chim. Acta* **2003**, *86*, 474.
- [8] M. Lavault, P. Richomme, J. Bruneton, Fitoterapia 1999, 70, 216.

Received August 11, 2008